skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poli, Rinaldo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work probed the thermal “switchability” from ethylene coordination/insertion to controlled radical polymerization of methyl acrylate (MA) for Brookhart-type α-diimine PdII catalysts. The investigation focused on the extremely bulky 2,6-bis(3,5-dimethylphenyl)-4-methylphenyl (Xyl4Ph) α-diimine N-substituents to probe reversible PdII–C bond activation in the MA-quenched Pd-capped PE intermediate and reversible trapping during radical MA polymerization. The substituent steric effect on the relative stability of various [PE–MA–PdII(ArN═CMeCMe═NAr)]+ chain-end structures and on the bond dissociation-free energy (BDFE) for the homolytic PdII–C bond cleavage has been assessed by DFT calculations at the full quantum mechanics (QM) and QM/molecular mechanics (QM/MM) methods. The structures comprise ester-chelated forms with the Pd atom bonded to the α, β, and γ C atoms as a result of 2,1 MA insertion into the PE–Pd bond and of subsequent chain walking, as well as related monodentate (ring-opened) forms resulting from the addition of MA or acetonitrile. The opened Cα-bonded form is electronically favored for smaller N-substituents, including 2,6-diisopropylphenyl (Dipp), particularly when MeCN is added, but the open Cγ-bonded form is preferred for the extremely bulky system with Ar = Xyl4Ph. The Pdα–C bond is the weakest one to cleave, with the BDFE decreasing as the Ar steric bulk is increased (31.8, 25.8, and 12.6 kcal mol–1 for Ph, Dipp, and Xyl4Ph, respectively). However, experimental investigations on the [PE–MA–PdII(ArN═CMeCMe═NAr)]+ (Ar = Xyl4Ph) macroinitiator do not show any evidence of radical formation under thermal activation conditions, while photolytic activation produces both TEMPO-trapped (TEMPO = 2,2,6,6-tetramethylpiperidinyloxy) and unsaturated MA-containing PE chains. The DFT investigation has highlighted a low-energy pathway for termination of the PE–MA• radicals by disproportionation, promoted by β-H elimination/dissociation and H-atom abstraction from the PdII–H intermediate by a second radical. This phenomenon appears to be the main reason for the failure of this PdII system to control the radical polymerization of MA by the OMRP (OMRP = organometallic-mediated radical polymerization) mechanism. 
    more » « less
  2. Metal complexes stabilized by appropriate ligands, particularly CuI/L systems, have proven powerful for the controlled polymerization of acrylates and other monomers by atom transfer radical polymerization (ATRP). The polymerization of acrylates by CuI/L systems, however, is haunted by interference of catalyzed radical termination (CRT), which reduces the chain-end fidelity. Other monomers do not appear to be affected by this phenomenon to any significant extent. The phenomenon appears to involve the formation of an organometallic intermediate by reversible radical trapping, as in organometallic mediated radical polymerization (OMRP). We summarize here the current knowledge and the efforts made to elucidate the CRT pathway and products. 
    more » « less